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A first-order channel model for fluid motion in long homogeneous lakes, as derived in 
detail by Raggio & Hutter (1982a), is presented. This model describes the motion 
through spatially one-dimensional boundary-value problems and is deduced by repre- 
senting each field variable by cross-sectional expansions with a constant and a linear 
term. Various wave solutions of the governing equations applied to rectangular basins 
with flat bottom are presented. It is demonstrated that for moderate rotation speeds 
of the Earth and for elongated basins of a homogeneous fluid the main features of 
gravitational oscillations are predicted by the model. In  particular Kelvin- and 
Poincar6-type waves are shown to exist. Furthermore, conditions of complete and 
incomplete reflections of Kelvin waves and free oscillations are discussed. The results 
corroborate the suitability of the model as far as wave motion in rectangular basins is 
concerned, but equally elucidate the physics behind them, which is less transparent 
when attacked with the full theory. The application of the model to basins of different 
shapes and to a real lake is reserved to a companion paper. 

1. Introduction 
Wave motions in a body of homogeneous water on the rotating Earth are charac- 

terized by a cyclonic or anticyclonic rotation of the wave vector. Several types of such 
waves may be distinguished. For instance, for Kelvin waves the surface elevation slope 
balances the effect of the Earth rotation. In the Northern hemisphere this quasi- 
geostrophic balance is manifested by an increase of the surface elevation to the right 
when looking in the direction of the wave propagation. In an enclosed basin this gives 
rise to waves travelling around the basin in a counterclockwise direction. In  contrast 
to this, Poincarb-type waves appear as wave patterns rotating in either of the two 
directions. Standing waves do not exist, as there are no stationary nodal lines of the 
surface elevation. Rather, these lines rotate in the clockwise and counterclockwise 
directions, and thus give rise to a single stationary point, known as the amphidromic 

Free waves in rotating systems cannot, in general, be simulated by the classical 
channel equation (see e.g. Chrystal 1904, 1905). These equations are purely one- 
dimensional, and ignore velocity and surface-elevation variations across the channel 

point. 
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width. At most, Kelvin waves can be obtained by superposing on this solution a surface- 
elevation correction from a transverse geostrophic balance (Defant 1953). This is known 
as the Kelvin wave-dynamics hypothesis. 

For these reasons water waves in basins on the rotating Earth were analysed with 
two-dimensional equations- the Laplace (1829) tidal equations. Kelvin (1879) and 
PoincarB (1910) studied the waves mentioned above as solutions of these equations. 
Further, Taylor (1920) solved the reflection problem for a half-open gulf, and first 
discussed free oscillations in rectangular basins. Kelvin (1879) and Howard (1960) 
analysed solutions in polar co-ordinates. Vivid discussions with a bias towards obser- 
vations are given by Mortimer (1963), and mathematical formulations for these can 
be found in the treatises of Lamb (1932) and LeBlond & Mysak (1978). Further, closed 
basins that have been treated are rectangles with constant depth (for a summary see 
Rao 1966), sectors with constant depth (Pnueli & Pekeris 1968), and ellipses with 
parabolic bottom (Ball 1965). 

Guided by the appeal of the classical channel equations, Raggio & Hutter ( 1 9 8 2 ~ )  
derived and extended channel models in which the inconsistencies of the Chrystal 
equations are removed. The aim was to deduce a spatially one-dimensional set of 
equations from the three-dimensional equations of fluid motion in a rotating basin, 
which is conceptually and computationally simpler than the full three-dimensional 
set of differential equations and boundary conditions. 

The derivation of this channel model involves the application of the weighted- 
residual technique in combination with a cross-sectional shape-function expansion of 
the field variables. The result is a hierarchy of channel models. These are applicable to 
a great variety of physical phenomena. Our intention here is to show that a first-order 
model can reasonably predict the gravitational waves mentioned above. To this end 
all nonlinear and friction terms in the general channel equations are omitted and shape 
functions are restricted to vary only in the transverse direction. 

2. Scope of this study 
The paper is arranged as follows. In 5 3 the first-order model using a constant and 

linear term in the shape-function expansion (a truncated Cauchy series) is presented. 
This set of equations is applicable for narrow elongated natural lakes of arbitrary 
bathymetry. In 5 4 these equations are then specialized for rectangular basins of con- 
stant depth. The emerging equations are subject to plane harmonic waves for both a 
non-rotating and a rotating basin. For the former, standing waves with longitudinal 
and antisymmetric transverse variations of surface elevation are shown to approximate 
the solution of the two-dimensional tidal shallow water equations. For the latter, 
Kelvin-type and PoincarB-type waves are deduced which nearly reproduce the corre- 
sponding wave solutions of two-dimensional equations. Superpositions of such solu- 
tions give rise to the formation of amphidromic systems. As a consequence, superposed 
Kelvin- and Poincarb-type waves cannot be regularly reflected a t  a barrier across the 
channel. In 3 5 we therefore investigate this reflection problem. To this end a further 
solution is added to the above-mentioned superposed travelling-wave solutions. When 
this solution has boundary-layer structure, the reflection is called complete. In this case 
a forward-moving Kelvin-type wave will, after reflection a t  the barrier and far distant 
from the barrier, transform into a backward-moving Kelvin wave. For incomplete 
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FIGURE 1. (a) Curved elongated basin situated in a Cartesian co-ordinate system (z, y, z) on the 
rotating Earth; x points towards the East, y North, and z into the vertical direction. A second 
co-ordinate system (8, n, z )  has 8 measured along a prescribed lake axis, n transverse to it in the 
undeformed free surface, and z vertical. (b) Unit base vectors el, e2, e,, defined along the respective 
‘natural’ co-ordinates (8,  n, z). These unit vectors are used to define the physical components of 
vectors. ( c )  Planes that cut the ‘long’ &xis perpendicularly are defined as cross-sections. They 
are those parts of the vertical planes which are wedded by the water. 

reflection this is not so, and the reflected Kelvin-type wave becomes of Poincar6 type. 
Conditions of complete and incomplete reflection of an incident Kelvin-type wave are 
closely examined. This study also allows the identification of Sverdrup and inertial- 
type waves as exhibited by the channel equations and paves the way for the free- 
oscillation study in long rectangles. 

Complementary results on wave motion in ring-shaped basins which further prove 
the suitability of the model equations are given elsewhere (Raggio 1981; Hutter & 
Raggio 1982), and the results on free oscillations of a model of arbitrary order applied 
to a natural lake are reserved for the companion paper (Raggio & Hutter 19823). 

3. A first-order channel model 
We are concerned here with the dynamics of an incompressible inviscid fluid with 

free surface, occupying a slender three-dimensional domain. To describe the motion 
a right-handed plane orthogonal curvilinear co-ordinate system is introduced (see 
figure la). The domain is assumed to be long in one direction of this curvilinear co- 
ordinate system, and the idea is to select a’ line on the undisturbed lake surface as the 
‘axis’ and to complement it with two other axes, one horizontal and the other vertical. 
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The selection of the long axis is arbitrary in general. Its curve parameter will be 
denoted by s, the co-ordinate measured horizontally by n, and that on the vertical axis 
by z, which is positive upwards. The co-ordinate system (s ,  n, z )  accounts in a natural 
fashion for the ‘bending ’ of the lake in its long direction, and the curvature K of the 
lake axis is a measure of this bending. 

In Raggio & Hutter ( 1 9 8 2 ~ )  a spatially one-dimensional (channel) theory was 
developed from the three-dimensional hydrodynamical equations. The idea was to 
develop each unknown field variable into a product of shape functions Q and an equal 
number of parameters, so that the velocity components v,, v,, v, (referred to the unit 
basis in figure 1 b )  and the surface elevation E have the representation 

v, = + . v  ,,...,...; E = Q.E. 

In  general, the functions + depend on n and z ,  but for the purposes of this article the 
z-dependencies will be ignored so that + = Q(n).  Also v,, . . . ,E depend on the arc 
length s measured along the lake axis and on time t. 

A channel model is a spatially one-dimensional set of partial differential equations 
(and associated boundary and initial conditions) in the variables s and t for the 
unknowns vs, v,, v, and p. A linear model accounting for bottom friction and atmos- 
pheric momentum input is characterized by the equations (4.6), (4.8), (4.9) and (4.11) 
of Raggio & Hutter ( 1 9 8 2 ~ ) .  These equations were subsequently specialized for 
Cauchy-series expansions. When Q = +(n), such an expansion is defined by 
Q = (1, n, n2, . . .), and if it is first order, it is truncated at the linear terms. This 
unbiased two-term expansion is not the most suitable for the problems treated here, 
but it will be shown that with it results are excellent proving a fortiori the suitability 
of the model. Occasionally in general discussions we shall also consider other shape 
functions . 

In the subsequent analysis the vertical velocity component v, will not be considered, 
the remaining field variables are then v,, v, and 6, and each of them has a two-term 
expansion v, = .Lo) + nvL1), v, = ( v f ) ,  v:’)), . . ., where n is the transverse co-ordinate. 
There are thus six unknowns, which can be selected as components of the vector 

For a linear model and force-free motion the equations governing free oscillations were 
derived in Raggio & Hutter (1982u, Q 5 ) .  In matrix form the equation reads 

where the operator A is given in equation (5 .6 )  of that paper. This operator contains 
the coefficients Ci5, which are expressible as cross-sectional integrals involving as 
integrand functions the curvature of the lake axis, the transverse co-ordinate and/or 
the depth. 
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4. Rectangular basin 
In  this case curvature terms vanish, and all cross-sectional constants are independent 

of the longitudinal co-ordinate. Moreover, if the axis is chosen to be in the middle of 
the canal,-and B is the width and H the depth, it is easy to show that 

Cmo = BH, Cml = 0, Cm2 = 4BH3 (m = 0, 1), 

Zlo = B, Z,, = 0, Z12 = 4B8, 

By = 0, so that (3.2) becomes 
with 

B =  

0 I 
I 

0 

0 
I 
I 

0 

Physically, the first and fourth component equations in (4.3) are statements of mass 
balance (notice the similarity with the kinematic wave equation). The second and 
fifth equation stem from a longitudinal momentum balance and the remaining two 
equations correspond to transverse momentum balance. The system (4.3), (4.4) is 
particularly transparent because it makes the coupling of the motion evident. For 
instance, iff = 0, i.e. a non-rotating basin, it decouples mainly into two subsystems of 
which the first 2 x 2 upper left submatrix in (4.4) is identical with the zeroth-order 
Chrystal model (Raggio & Hutter 1982a) ; the second 3 x 3 submatrix in the middle of 
(4.4) extends this model to a more sophisticated lower-order model which includes the 
transverse pressure gradient and thus accounts adequately for transverse mass flux. 
For f =+ 0 decoupling is not possible, proving a posteriori that the Chrystal type of 
equations can only be applied rigorously for non-rotating channels. The model corre- 
sponding to the 3 x 3 matrix in the middle of (4.4) would be of first order in the trans- 
verse velocity. The full first-order model also includes transverse variations of vn, and 
it is seen from the form of the operator B( ) that this first-order transverse velocity only 
decouples from the lower-order model when f = 0. 

The remainder of this section will be devoted to an analysis of the operator B( ). 
Only the key steps of the calculations will be presented, however. 
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4.1. Free oscillations in a non-rotating rectangle 

The problem we shall deal with in this section is: given a non-rotating system, f = 0, 
what are the solutions of (4.3)? Or, do the three subsystems emerging from this 
equation approximate the oscillating behaviour of a rectangular basin ? 

Standing-wave solutions to (4.3) with velocity components v, which vanish a t  s = 0 
and s = L are 

where k,, ,, must have integer values. Substituting these expressions into (4.3) yields 
a homogeneous linear system of equations for the amplitudes A,, . . . , A,. Its charac- 
teristic equation has the solutions 

Once these are known, the amplitudes A,, . . . , A ,  can be determined; when this is done, 
the combined solution (4.5) has the form 

+ n [ 1 + $ (--$)']'A~ cos (gs) cos o,t] , ( 4 . 7 ~ )  

in which k, and k,  may have any integer value. Since the transverse co-ordinate n 
appears in a linear fashion, the model gives rise to the possibility of antisymmetric 
surface elevation. It must be and is indeed accompanied with transverse mass flux as 
seen from (4.7~).  Boundary conditions a t  the canal shore are not matched; but this is 
no surprise, for the unbiased shape functions which were selected do not automatically 
satisfy the boundary conditions. 

This problem warrants closer investigation. A clue to it is obtained by comparing 
the results (4.7) with those emerging from the two-dimensional tidal equations (see 
Krauss 1973; LeBlond & Mysak 1978) for the case f = 0, yielding the following. 
Whereas the exact solution consists of terms in which any order of sinusoidal variation 
of the fields in the transverse direction may occur, the solution (4.7) with the frequency 
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relations (4.6) only allows the lowest-order transverse mode to be taken into account. 
Therefore, restricting the two-dimensional solution to this mode, it is seen that the 
frequencies ol, obtained with (4 .7)  and the tidal equations, are identical, but that the 
frequencies w2 differ in the coefficient of the second term under the square-root sign. 
Denoting frequencies obtained using the two-dimensional shallow-water equations 
by o ( C 1 )  (for mathematical expressions see Krauss 1973; LeBlond & Mysak 1978) we 
may thus write 

w,- [ 1 + 1*2(L/kB)']* 
uf - 1 + (L/kB)2 ' 

As far as velocities and surface elevation are concerned, a comparison of the two- 
dimensional solutions and formulas (4 .7 )  reveals that the latter are derivable from the 
former by a Taylor-series expansion of all functions of the transverse co-ordinate n ,  
restricting the expanded representations to zeroth- and jirst-order terms. Higher-order 
models using Cauchy series with more terms will improve on this Taylor-series 
expansion, but still violate shore boundary conditions, and shape functions which 
satisfy them may make the convergence in the transverse direction more uniform. This 
presumption is borne out very clearly if a zeroth-order model is considered having 
only one shape function per variable, which is the eigenfunction of the two-dimensional 
solution. For instance by selecting the shape functions 

[sin ( g n ) ,  sin E n ) ,  cos ( g n ) ]  for (&v8,vn) (k = l y  3 ,5 ,  ...), 

[cos ( g n ) ,  cos ( g n ) ,  sin ( g n ) ]  for (&v,,v,) (k = 2,4,6, ...), 

the exact two-dimensional solutions for the rectangular basin with flat bottom are 
obtained for the kth mode of transversely symmetric and skew-symmetric surface 
elevation respectively, and a model with an infinite number of trigonometric terms will 
provide the exact two-dimensional solution for all modes. 

The above observations will help in the selection of more general shape functions, 
but it is somewhat surprising that the selection of one single shape function per variable 
was sufficient to model a particular mode. This is the exception, and no longer holds 
when f $. 0, the reason being that, in rotating basins, neighbouring points move in an 
' out-of-phase fashion ', requiring a ' two-degrees-of-freedom description ' for at least 
one variable. The reason for the success with the two-term Cauchy series lies in the 
derivation of the operator B given in (4.4). It is based on a weak form of the original 
boundary-value problem which incorporates bottom and free-surface boundary 
conditions (for a detailed discussion of this see Raggio & Hutter 1982a). Because 
derivation of one-dimensional models corresponds to a smoothing operation over cross- 
sections, errors in shore boundary conditions will also be smoothed out. 

4.2 .  Kelvin-type waves in an injinitely long rectangular canal 
The tidal equations permit wavelike solutions in a channel of constant cross-section 
for which transverse velocities v, vanish, but whose longitudinal velocities vary 
exponentially in the transverse direction (see LeBlond & Mysak 1978). The operator 
(4.4) does not permit wavelike solutions of (4.3) with vanishing vf) and up). Hence 
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exact reproduction of Kelvin waves is not possible with the full first-order equations, 
but a submodel in which longitudinal velocities and surface elevation are first order 
but transverse velocity is zeroth-order (this model is characterized by deleting the last 
column and last row in the matrix B) permits construction of Kelvin-type waves. 
Indeed by choosing 

(4.8) 

where F is any smooth function, U,, . . . , 2, are amplitudes, K is the wavenumber and 
w the frequency, and by substituting (4.8) into the system (4.3) (which is now reduced 
by one equation and one variable), one obtains 

([(O', VLo), Wg), &'" Vi')) = ( 2 0 ,  UO, &, 21, u1) F(KS- wt),  

v, = via) + nvi') = f 1 T n- U,F(KS T wt),  

v, = 0.  
( 9 

Upper (lower) signs correspond to waves travelling in the positive (negative) direction 
of s. A progressing-wave solution has been found exhibiting Kelvin wave structure; it 
has the same phase speed as the two-dimensional tidal operator, and the brackets in 
(4.9) are truncated Taylor series of exp (k nf/c), arising in the exact Kelvin wave 
solutions. Further, adding a forward (positive-sign) and a backward (negative-sign) 
solution (4.9) and assuming that F (  ) = cos ( ), a Kelvin amphidromy is obtained: 

f cos KS COB wt -. n - sin KS sin wt 
C 

f sin K,sin wt - n- cos ~s cos o t  
C 

(4.10) 

Notice that there is no position s = s1 for which v, would vanish for all n and all 
times t .  Qualitatively, this is exactly the situation encountered by Taylor (1920) when 
trying to solve the reflection of a Kelvin wave a t  the closed end of a half-open gulf. In 
fj 4.4 a similar approach will be used. 

4.3. Wave solutions of the full first-order system - especially Poincard-type waves 

We now return to the full system (4.3) with operator matrix (4.4) and seek travel- 
ling solutions of the form 

(4.11) 

Substituting (4.11) into (4.3) yields a homogeneous linear system for the unknowns 
Z,, . . . , V, which possesses non-trivial solutions if the dispersion relation 

a s - [ ~ 2 + 2 ( y 2 + 1 ) ] a 4 + [ ~ 2 ( Y 2 + 1 ) + ( y 2 + 1 ) 2 ] a a - F 2 y 2  = 0 (4.12) 
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is satisfied. Here 

(4.13) 

with K = n/L, ,u = LIB; (4.14) 

l i p  is the aspect ratio and v, ji and y are respectively dimensionless frequency, 
transverse wavenumber and rotational speed all normalized with the longitudinal 
wavenumber K.  Two parameters thus govern the dispersion relation. The aspect ratio 
describes the ratio of transverse to longitudinal wavelengths. For p = 1 both are the 
same, and the motion has no prevailing direction. For ,u > 1 the elongated nature of 
the motion must evolve and become more and more pronounced as p is increased. This 
suggests that, if our channel model is meaningful, real behaviour should be better and 
better approximated with increasing ,u. The second parameter in the dispersion relation, 
y ,  is a dimensionless measure of the rotation speed. According to its definition i t  grows 
with increasing f and L and with decreasing H. For homogeneous water bodies and 
realistic values off, y < 1 ; for reasons explained later we shall, however, also consider 
values of y between 1 and 20. Once the frequency relation (4.12) is exploited, the free 
amplitudes Zo, ..., V, can be determined; when this is done the combined solution has 
the form 

where for reasons of further comparison the abbreviation 

(4.16) 

has been used. This solution may be contrasted with the Poincar6 (1910) solutions of 
the tidal operator. There are two classes having dispersion relation (4.21 a) below (see 
Krauss 1973; LeBlond & Mysak 1978). In the limit as f + 0 one class has transversely 
antisymmetric, and the other symmetric, surface elevation. When expanding these 
solutions into Taylor series of n and truncating at  the lowest-order terms, the 'anti- 
symmetric' solution reveals (4.15) except for the terms indicated by [ ]*. But these 
turn out to be small when exploiting the frequency relation for practical values of the 
rotation speed, and hence can be ignored. The 'symmetric' solution is not approxi- 
mated by (4.15), but this is no surprise, for in the limit f + 0, E in (4.15) is odd in the 
transverse co-ordinate. 

On the other hand it is not difficult to see that by replacing the simple powers of the 
Cauchy-series expansions by trigonometric functions (cosine for ' symmetric ' and 
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sine functions for 'skew-symmetric ' elevations) better solutions of either types of 
PoincarB waves could have been found. 

There remains the proof that the approximate dispersion relation (4.12), which has 
three real roots, gives accurate values for the frequency-wavenumber relationship 
for all waves characterizing rotating systems. Moreover, since energy propagates with 
the group velocity, sufficient agreement of the latter in the two formulations should 
also be obtained. 

Since the dispersion relation may be written asf(u,  K )  = 0 one has 

and hence 

Following this rule, using (4.12) it  is not difficult to show that 

with 

(4.17) 

(4.18) 

(4.19) 

This must be compared with the group velocity of the classical theory, for which the 
dispersion relations read 

$ 01 -p2- y2- 1 = I) , Poincarh-type waves, ( 4.2 1 a) 

4 1  - 1 = 0, Kelvin-type waves, (4.21b) 

u2 cl -p2- y2 = 0, Sverdrup-type waves, ( 4 . 2 1 ~ )  

uEl - y2 = 0, inertial-type waves, (4.21d) 

where u,, denotes the frequency of the classical theory. 
These yield for group velocity of the classical theory cgl) 

(cl) for PoincarB-, Kelvin-, Sverdrup-type waves, cgr= (mi (b' for inertial-type waves. 

Therefore, if the approximate formulation models energy propagation properly, the 
factor agr should be close to unity or zero, respectively, depending on which of the above 
wave types is considered. 

The dispersion relation (4.12) and the group-velocity formula (4.20) have been 
analysed numerically. In  view of the discussion following (4.14) the dimensionless 
frequency u should be plotted as a function of the aspect ratio, firstly when y is held 
fixed, and secondly when p is held constant but y is varied. This will give information 
regarding the significance of both the rotation of the basin and the elongated nature of 
the motion. An example of this study is shown in figure 2. For y = 0.5 the three real 
roots of (4.12) are displayed as functions of ,u in figure 2 (a). Solid lines will henceforth 
correspond to solutions of (4.12); dashed lines indicate the exact frequency relations as 
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shown in (4.21). The three different solutions can be interpreted respectively as a 
Poincad-type, a Kelvin-type and an inertial-type wave. To explain these interpre- 
tations notice that the Poincar6-type frequency t~ approaches ,u as ,u becomes large, 
which resembles the tendency exhibited by the classical Poincarb waves. The second 
solution Q N 1 represents the Kelvin-type frequency. By inspection, (4.15) show that 

FIQURE 2. (a) Dimensionless frequency Q in a straight rectangular channel as obtained from 
(4.12), plotted against p = L/B,  for y = f / ~ ( g H ) f  = 0.5. Dashed lines are for the diepersion 
relation of' the exact two-dimensional tidal operator. (b )  Dimensionless correction factor ab in 
a straight rectangular channel plotted against p for y = 0.5. Dashed lines correspond to exact 
results. 
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FIGURE 3. (a) Dimensionless frequency u in a straight rectangular channel as obtained from (4.1), 
plotted against y = f/rc(gH)+ for p = 4. Solid lines are those of the channel model, dashed lines 
correspond to the exact tidal operator. (a) Dimensionless correcting factor agr for the group 
velocity in a straight rectangular channel plotted against y = f / ~ ( g H ) f  for p = 4. The dashed 
lines at a, = 1, 0 correspond to the respective values of the two-dimensional tidal operator. 

Y 

in this case the amplitude of v, is small compared with that of v,. To see this, replace 
the free amplitude V, in (4.15) by c(02 - g H K 2 ) ,  where is now arbitrary, and observe 
that for Kelvin waves o2 2: g H K 2 .  This guarantees for ro of order unity that and 
therefore v, are small, while the amplitude of us becomes of order unity. This same 
procedure also shows that the amplitude of 5 is bounded away from zero. This is 
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approximately tantamount to a classical Kelvin wave. The third solution resembles an 
inertial-type motion, for CT approaches y asp increases. Exploring (4.15) for frequencies 
w near f also indicates that the absolute value of 6 remains small, while those for v, and 
v, are large (compare for example the terms indicated by [ I*). This corresponds to 
inertial motion in which vertical displacements are very small, although horizontal 
velocities may have appreciable values. 

To demonstrate the accuracy of the model as far as group velocities are concerned, 
we have displayed in figure 2(b) the group-velocity correction factor agr defined in 
(4.22) as a function of p for the three waves and for y = 0-5. The results of the exact 
theory are shown dashed. For Poincarb- and Kelvin-type waves the value of this factor 
is indeed close to 1, provided that p is not too close to 1. p = 1 corresponds to a wave that 
has the same wavelength in the longitudinal and transverse directions, whereas our 
channel equations were deduced for elongated basins and are thus applicable to 
motions with dominant longitudinal components, thus group velocities can hardly be 
reasonably well predicted, when p is close to unity. For the third wave type, energy 
propagates Yery slowly, since agr 21 0. This corresponds to inertial-type waves. 

Having indicated that the approximate model is reasonable for a small value of the 
rotation speed y and for all aspect ratios such that p 2 2, roughly, it  is interesting to 
see how the approximate dispersion relation (4.12) compares with the exact counter- 
part (4.21) when ,u is held fixed and the rotation speed y is varied. This is shown in 
figure 3, in which the dispersion relations (4.12) and (4.21) are graphically displayed 
for 0 < y < 3 and p = 4. Figure 3(a) shows the dimensionless frequency Q plotted 
against y. Evidently, Poincarf+type, Kelvin-type and inertial-type wave solutions 
can be differentiated. Figure 3 (a)  indicates further that, qualitatively, exact and 
approximate frequency curves are close (errors will be quantified below). The structure 
of the frequency curves for Kelvin- and inertial-type waves near y = 1 is of some 
interest. As y increases, a Kelvin-type wave at small values of y becomes an inertial- 
type wave at large values of y, and vice versa. The frequency curves of the approxi- 
mate dispersion relation do not cross but only nearly touch each other. This will be 
called a ‘kissing mode’. We have found it to be the location where the corresponding 
group velocities are poorly predicted (figure 3b) .  Further reasons for the existence of 
this transition zone can be found in 0 5 and figure 7. 

In  figure 3( b )  we have also plotted the group-velocity correcting factor a g r  for the 
same three waves, dashed lines indicating the corresponding values for the exact theory. 
Group velocities for Poincarb waves are only predicted accurately for rotation speeds 
y < 1, approximately, and those for Kelvin-type and inertial-type waves are poor 
when y N 1. This is exactly the region of the ‘ kissing mode ’ in figure 3 (a).  The results 
of figure 3(a)  indicate that for the given value of p and the range of values for y 
Poincarb-type waves appear to be reasonably well predicted. This is borne out very 
clearly in figure 4( a, b)  which show plots of the dimensionless Poincarb frequency as a 
function of y and p ,  respectively. Calculations were performed for 

0 < y < 20, 1 < p <  20. 

y = 0 means no rotation or an infinitely deep basin, y = 20 is an upper bound when a 
two-layer model like that of Csanady (1972) is considered, in which a reduced gravity 
constant and a reduced depth are introduced to calculate thermocline displacements. 
For homogeneous lakes y is certainly less than 1. 
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Approximate 

I 5 10 15 20 

FIGURE 4. (a) Dimensionless Poincad-type frequency plotted against y = f / K ( g H ) *  for various 
values of p = L/B.  Solid lines correspond to the channel model, dashed lines are for the two- 
dimensional tidal operator. (b) Dimensionless frequency d of the PoincarB-type waves plotted 
against p for various valuea of y. Solid lines are for the channel model, dashed lines for the two- 
dimensional tidal operator. 

P 

The discrepancies between exact and approximate frequencies grow with increasing 
y ,  yet relative errors [(cr- crcl)/crcl\ stay below l O - l ,  and are extremely small when 
y < 1. Frequencies and therefore phase speeds for Poincar6 waves being well predicted 
does not imply that group velocities for these waves are also obtained accurately. 
Exact and approximate dimensionless group velocities are given by (4.22) and (4.19) 
respectively, in which cr must obey the dispersion relations (4.21) and (4.12) respec- 
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FIGURE 5. (a) Dimensionless group velocity of Poincar6-type wavea for the two-dimensional 
theory and the channel model, plotted against p for y = (0.1, 1, 10). Solid lines correspond to 
results of the channel model, symbols indicate group velocities of two-dimensional tidal operator. 
( b )  Relative error of the group velocity of Poincad-type waves when calculated according to the 
classical and approximate models respectively. 

tively. Results are displayed in figure 5 (a) ,  where solid lines correspond to the dimen- 
sionless group velocity of the approximate model and symbols stand for that of the 
exact theory. For y < 1 agreement is fair unless p is about unity and slightly larger 
and relative errors Icg? - cgrl/ lcgl)l are small (figure 5 b ) .  On the other hand, for y = 10 
the approximate group velocity has a pole approximately at p = 8. The location of 
this pole is obtained from (4.20) by setting a g r  = 00. In  the classical (exact) formulation 
it does not arise, implying that large relative errors must evolve from the application 
of the channel model in the neighbourhood of these points. This is corroborated in 
figure 5 ( b ) .  
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The above considerations, together with further scrutiny of the dispersion relation 
of the full first-order model operating in rectangular basins (equation (4.4)), indicates 
that the extended channel theory for the tidal operator based on a two-term Cauchy- 
series expansion predicts frequency-wavenumber relationships accurately enough, 
provided that (i) the longitudinal wavelength is about twice as large (or larger) than 
the width of the channel, (ii) rotational speeds y (defined in (4.13)) stay below unity. 
This indicates that the model should not be used for a two-layer model with reduced 
height and density as proposed by Csanady (1972). In  such a model rotation speeds 
are larger than unity, and group velocities and hence energy-propagation speeds are 
incorrectly predicted, as we have just seen above. 

On the other hand, calculations with higher-order models indicate that these poles 
might be removed to locations outside the practical ranges of the parameters. However, 
an insufficient number of calculations have been performed to make this statement 
firmly. 

5. Reflection of Kelvin-type waves at a barrier of a half-open rectangular 
canal and free oscillations in rectangles 

In order to find the complete reflection for Kelvin-type waves (see Taylor 1920) we 
seek wave solutions that allow for exponential decay of the fields involved as one 
moves away from the barrier. We thus assume 

in which h may be complex. Depending on the sign of %(A) ,  these fields decay 
exponentially as one moves into the positive or negative s-direction. Substituting (5.1) 
into (4.3) yields a homogeneous linear system of equations for the amplitudes, whose 
characteristic equation agrees with (4.12) and (4.13) if the substitution h = + i K i s  made. 
For values of A satisfying this equation the combined solution (5.1), found as in (4.7), 
has the form 

sinwt , I h2gH + w2 - f 
f 2 - 0 2  

vn = Ale-As [ u2 cos wt - nh 

h2gH + ~2 - f 
9f 

cos wt + n 

( 5 . 2 ~ )  

(5 .2b )  

( 5 . 2 ~ )  

where A ,  is a constant. To explore the dispersion relation for conditions that assign to 
(5 .2 )  a boundary-layer structure, we recall that adding a forward- and backward- 
moving Kelvin-wave solution (4.9) has not led to a valid solution for a closed channel 
(see (4.10)) since there is no position s = s1 with no motion for all n and all t .  The same 
inferences can be drawn for (4.15), which would lead to both PoincarB-type and 
Kelvin-type amphidromies. However, on adding (4.10) (or (4.15)) to (5.2), positions of 
no motion can be found; we shall demonstrate this with the simpler Kelvin solution 
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(4.10). Conditions of reflection at a barrier s = s1 are vs(sI) = 0, or with an obvious 
notation 

(5.3) vpl"in(8,) + v y P ( 8 , )  = 0, 

which must hold for all time. Substitution from (4.10) and (5.2) into (5 .3)  yields 

A, = -U,ehlsinKsl (5.4) 

(5.5) 

Reflection of a Kelvin wave of given frequency w and given wavenumber K at a barrier 
located at s = 81 thus affords evaluation of h and 8, from (4 .12)  (K is replaced by - ih) 
and (5 .5 ) .  Equation (5.4) then yields A, in terms of the remaining quantities, and 
the compound wave is obtained when (4.10) and ( 5 . 2 )  are added. With c 2  = gH, 

V, = U, [sin KS - exp ( - h(s - 8,))  sin ~s,] sin wt ( 
-h(s-sJ)sinKso ABE2+"2- f2 ]  cosot), ( 5 . 6 ~ )  

f (fa - w2) 

h 2 c 2  + w2 -fa 
f 2 -  0 2  

cos ot - nA v,, = U, exp ( - h(s - 8,))  sin KS, 

hc w 1 6 = u ( ~ )  H t  ([cosm-exp(-A(s-s,))-sinKs, sinot 

s i n q  sinwt . 1 1  h2c2-t o 2 - f a  

fc 
-A@-8,)) ( 5 . 6 ~ )  

As is evident, a Kelvin wave propagating along one side of a half-open rectangular 
basin cannot always be regularly reflected as a proper Kelvin wave (propagating along 
the other side and in the opposite direction), because far distant from the barrier as 
s + & 00 the exponential solution has true exponential behaviour only when &?(A) 2 0, 
for which this contribution is asymptotically small. This corresponds to Taylor's 
(1920) problem, but our approximate analysis is very much simpler than was his. 
Frequency ranges for which the exponential decay in (5.6) occurs lead to solutions with 
boundary-layer structure and the reflection is complete. If h is imaginary there is no 
exponential decay, and a forward-moving Kelvin wave cannot be reflected as a 
backward-moving Kelvin wave - an incomplete reflection. 

To determine the frequency ranges where solutions with boundary-layer character 
may exist, we renormalize the quantities (4.13) and (4.14) with p, and introduce 

(5.7u,b,c) 

The dimensionless frequency 5 is a parameter which involves the essential quantities 
characterizing the reflection, namely the width B (instead of the longitudinal wave- 
length L, which has less physical relevance since the channel is semi-infinite), the depth 
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Complete reflection of Kelvin waves possible 

Exponential 
Kelvin 

Kelvin 

Poincari + Kelvin 
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FIGURE 6. Wavenumber E in the frequency range and for the 
two-dimensional dispersion relation. 

H of the channel, and the frequency w of the wave. The Characteristic equation (4.12) 
may then be written as 

A x z + E x + C  = 0, (5.8) 

where x = 3, (5.9) 

A =3', E = (23'-1)(72-3'), C = 3 2 ( 3 2 ( 5 2 - 1 - 2 ~ ) + 7 2 ( l + y ' ) ) .  (5.10) 

For a given frequency 3 and given rotation speed 7, i? is determined from (5.8),  which 
alternatively gives A ,  and boundary-layer solutions emerge when i? has imaginary parts. 
To decide this it suffices to analyse the discriminant D of the parabola (5.8). For, if 
D 5 0, there are two real roots, a real double root and two conjugate complex roots, 
respectively. As a function of T2 the discriminent D describes the parabola, 

D = (472+ 1)34-272(272+ 1)B2+Y4. (5.11) 

The positive roots of D = 0 are 

(5.12) 

negative roots need not be evaluated since they correspond to the same oscillation. 
So, for positive r 

(5.13) I 1 c 0 (a, < 3 < i72). 

> 0 (a <a,; a > F 2 ) ,  

D = 0 (a =al, 3 =  3J, 

For i7, < 3 < 3, the characteristic equation (5.8) possesses four complex roots El, ,, 3, 4, 

and thus the resulting solutions (5.2) viewed as functions of position have oscillatory 
exponential character as one moves away from the barrier. This is indicated in figure 6; 
it  corresponds to complete reflection. 

Consider next the two isolated points on the frequency axis where the discriminant 
D vanishes. For 3 = a2 = 7, i?l,2,3,4 = 0, and no wave propagates along the s-axis. 
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- 

Scrutiny of (4.16) shows that surface elevations 6 are very small while velocities 
are not. The corresponding motion is therefore of inertial type. For 5 = ZFl (5.8) 
possesses only real solutions for the Ks, and thus the waves are purely oscillatory. 

The above relates to the interval 3l < 3 Q 3, as shown in figure 6. Three different 
wave types have already been encountered. For 5 = 31, incomplete reflection arises; 
when 5, < 3 < 3,, complete reflection is possible and when 3 = 3, = 7 no wave 
propagates. It is advantageous to interrupt the discussion here and to complement 
figure 6 with figure 7. It shows for given frequency 3 in the range 0 < 3 < 2 and for 
given rotation speed 7 = 0.5 real and imaginary parts of 2 as obtained by exploiting 
both the frequency relation (6.8) of the channel approximation and the corresponding 
exact frequency relations (4.21) (written in terms of the overbarred quantities). 
Because we are only interested in the reflection properties of (6.6), and since K and h 
are related by (6.7b),  it suffices to plot either two real parts of K (of all four real roots) 
or else when the Ks are complex one positive real part and one negative imaginary 
part. This is done in figure 7. A real K (imaginary A )  will correspond to a purely 
oscillatory solution, and a conjugate complex K will give rise to exponentially decaying 
(positive imaginary part) oscillatory behaviour. The classical Kelvin- and Poincad- 
type waves, obtained from (4.21) and (5.7), are plotted as thin lines and inertial- 
and Sverdrup-type waves are marked as the points for which K = 0, 3 = 7 and 
5 = (F2+72)9. Thick solid lines correspond to the channel solution using the two- 
term Cauchy-series expansion. It is seen that in the subinertial range rl < 3 < 7 the 
exact theory and the channel model lie far apart. This is a first indication that 
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difficulties might arise with the channel approximation for wave motions at sub- 
inertial frequencies. 

It still remains to discuss the case for which D > 0 in (5.1 1). According to the lemma 
of Vieta applied to the parabola (5.8) one has 

( 2 3 -  1) ( 3 2 - 7 2 )  
X] +X2 = , 

3 2  
(5.14) 

XlX2 = 32(aa-l-zya)+72(l+;ji2), (5.15) 

where x1 and x2 are the two roots of (5.8).  Some cases have to be distinguished. For 
3 < 3, the right-hand sides of (5.14) and (5.15) are positive, so all Zs assume real values 
and all waves with frequencies 3 < 72/(4T2 + 1) = 3; are purely oscillatory. Two of 
these waves can be interpreted to have Kelvin character, the other two are due to the 
mathematical approximation of the channel model and have no physical interpre- 
tation. This follows from figure 7, which shows that two wavenumbers are close 
to those of the classical Kelvin waves, but it can also be inferred from a careful 
analysis of the velocities and surface elevations (5.2), that correspond to these 
solutions. 

The superinertial domain 3 > a2 = 7 separates into two subdomains as follows. For 
3 2  = jP+;ji2,x1+x2 > 0,x1x2 = 0. Thus therearetwosolutionswheretheZsarepositive, 
representing two oscillatory solutions and two solutions where no wave propagates in 
the direction of the channel axis, since the Zs vanish. The first is of Kelvin type. The 
latter represents Sverdrup waves. For 32 > ,ii2+;ji2 the right-hand sides of (5.14) and 
(5.15) are positive, and the emerging waves are thus oscillatory. These waves are 
of Poincar6 and Kelvin type and have no boundary-layer structure (see figure 6). 
As is evident from figure 7, the classical solutions and the approximations are 
close. 

Finally, for 5% < 3 2  < F2 + 72, since x1x2 < 0, but x1 + x2 > 0, two Zs are real and two 
are imaginary, giving rise to exponential and/or purely oscillatory solutions with 
Kelvin behaviour (figures 6 and 7). The latter figure clearly shows where Kelvin- and 
Poincarh-type waves are reasonably predicted by the channel model. The shift between 
the exact Poincarh solution and that of the channel model is due to the use of Cauchy 
expansions. Also the superinertial (3 > 7) Kelvin branch deviates more and more from 
the exact Kelvin wave as decreases, approaching 7, where the inertial motion 
obtains. As 3 is further decreased there appears in the model a domain of exponential- 
type behaviour which is not exhibited by the two-dimensional equations; this points 
a t  a limitation of the channel model. For even smaller frequencies Kelvin-type 
behaviour is recovered, but a second oscillatory solution branch appears with no 
physical significance. Figure 7 also brings out very clearly the reflection properties of 
Kelvin waves. For 3 > (,E2 + 72)J a reflected Kelvin wave will be essentially of Poincar6 
type, since it will have a Poincarh component. For frequencies below the Sverdrup 
frequency, a Kelvin wave will, however, be essentially reflected as a Kelvin wave, since 
the reflected wave is either Kelvin-type or exponential-type. 

A modification of figure 6 ,  more appealing, better suited for a comparison with 
results from numerical solutions of the tidal equations, and valid for ,u = 5, is given 
in figure 8. The solid lines correspond to m2 = {y2ii2/(4y2 +,ii2), y2, y2 +,ii2} and separate 
the four different domains introduced above. As far as reflection of a progressing wave 
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is concerned, only two physically significant domains need be distinguished, the 
Poincar6 and Kelvin modes, as indicated. The domain ‘ Poincar6 modes ’ is so indicated 
despite the possibility of Kelvin solutions (see figure 6) because incoming Kelvin-type 
waves are reflected by Poincar6-type waves so that the total wave exhibits Poincar6 
structure. Similarly, for frequencies smaller than the Sverdrup frequency of the 
channel model, Kelvin waves are reflected by Kelvin waves or exponential-type 
solutions, resulting in Kelvin-like behrtviour. Figure 8 may be used to estimate whether 
certain oscillations arising in a basin are of Kelvin or Poincar6 type. Depending on the 
value of y an oscillation of given prescribed frequency may be Poincark-type in a short 
and deep channel-like basin but become Kelvin-type as the channel becomes longer 
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FIGURE 9. First eigenfrequency u for a square and rectangles of length 4, 5 and 
16 times their width, plotted against the rotation speed y. 

and more shallow and/or as y increases. Such estimates may be helpful in a priori 
estimates to decide whether a certain eigenmode of a basin gives rise to both cyclonic 
and anticyclonic amphidromic systems. 

In the remainder of this section we shall indicate how eigenfrequencies of rectangular 
basins of constant depth may be determined. To this end notice that, since reflections 
occur at  two barriers, w,, wn, and ( will contain terms involving exp ( - As) as well as 
exp (As).  The extra free constants occurring in the solution will then enable us to make 
v, vanish at  two different values of s. It is advantageous to place the origin of the 
co-ordinate system in the middle of the rectangle with length L and width B. The 
boundary-layer solutions (5.1) accounting for exponential decay away from the ends 
must then be replaced by 

(5.16) 

c(0) = 2, cosh As cos wt, 

vjo) = U, sinh As sin wt, 

wf) = V, sinh As cos wt, 

<(I”) = 2, sinh As sin wt, 

vil) = U, cosh As cos wt, 

= V, cosh As sin wt, 

with the hyperbolic function selected so as to obtain the antisymmetrical elevation. 
For the symmetrical elevation cosh As and sinh As would have to be interchanged. 
Substitution of (5.16) into (4.3) yields a homogeneous linear system of equations for the 
amplitudes Z,, . . . , V,. It possesses non-trivial solutions, provided that 

- 
where A = AL/?r. (5.18) 
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For frequencies satisfying the dispersion relation (5.17) the free amplitudes in (5.16) 
can be determined. When this is done, one obtains 

sinh As sin wt + nh 0 "'if 'cosh As cos ot) , 
f -f 

( 5 . 1 9 ~ )  

2- 2 
wn = A,(A2gH+02sinhAscoswt of -nhh2gHT" (0 -f cosh hssinot], (5.19b) 

-k w2 sinh As sin wt) , AH 
9f 

= A, (w cosh As cos wt + n ( 5 . 1 9 ~ )  

where A, is a free amplitude. 
Equations ( 5 . 1 9 ~ )  together with (5.17) do not yet form a standing wave in an 

enclosed rectangle. As was the cme for the reflection problem at the barrier (5.19) must 
be superposed with a solution that corresponds to a superposition of a forward- and 
backward-progressing Kelvin- or Poincar6-type wave. These solutions were con- 
structed in $ 4  and gave rise to the existence of amphidromic points. For Poincad 
waves they are given in (4.15), and for Kelvin waves in (4.9) and (4.10). If we identify 
these solutions by the superscript 'Kelvin' and the solutions (5.19) by the super- 
script ' hyp ' the necessary condition of no motion at the ends for Kelvin-type waves is 

(5.20) 

Substitution from (4.10) and ( 5 . 1 9 ~ )  then yields the reflection conditions at the walls 

wpl*( f +L, n, t)  + W:YP( iL,  n, t )  = 0. 

( 5 . 2 1 ~ )  

y2(u2-y2) tanh&rX+uX(X2+u2-y2) tangnu = 0, (5.21b) 

where Uo is the free amplitude of the Kelvin solution (4.10). Equations (5.17) and 
(5.21b) together allow determination of the eigenfrequency of the system, and the 
compound solution (4.10) and (5.19) becomes 

sinhhs sinwt 
sin ~ K L  

v, = U, {[sin K s  - sinh 4hL 1 
sin &KL h2c2 + 02- f 2 

sinh #hL w2 - f 2 
(5.22 a) 

sin )KL h2c2 + w2 A"' + o 2  - f 2 v,=-u sinh As cos wt - nh cosh he sin wt] , (5.22 b) 
Osinh +hL ( wf w2-f2 

coshs coswt 1 hc s i n # ~ L  
8 = uo (:)* ([ 'OS Ks -wsinh # A h  

sinhhs sinwt , 1 1  hc2+ w2 - f 2 sin )KL 
fc sinh4hL 

( 5 . 2 2 ~ )  

in which c2 = gH. 
Numerical solutions of (5.17) and (5.21 b) have been calculated, and a selection of 

results is given in figure 9. This figure displays the first eigenfrequency u as a function 
of the rotational speed y for a square and for rectangles of length 4,5  and 16 times their 
width. The curve for p = 5 corresponds to the dashed line in figure 8. This mode has 
one amphidromic point and is the lowest-order traniwersely antisymmetric solution, 
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and is thus denoted by the symbol (1,O). Results have also been obtained for higher- 
order modes; for mode (9,O) these are shown in figure 8. It may also be recognized that 
for elongated rectangular basins the (1,O) eigenfrequency is fairly insensitive to the 
rotational speed. The inertial mode is also shown for completeness, for it is also an 
eigenfrequency of the system. 

It is not our intention to explore the channel approximation fully for rectangular 
cross-sections. One could for instance complement figure 9 with similar plots for higher 
frequencies, and could further treat the reflection problem by using (4.15) rather than 
(4.9) and (4.10). This would essentially only duplicate the exact results of Rao (1966). 
Rather, our intention was to search for the conditions of validity of our channel model 
for its use in real natural elongated basins. As far as rectangles are concerned, limitations 
of applicability have been found, indicating that the channel model is likely to be a 
valid approximation for superinertial frequencies, but may be problematic for motions 
at frequencies below the inertial frequency. Since superinertial frequencies are the 
domain of gravitational motions, and rotational modes are subinertial, we conclude 
that the channel approximation will predict gravitational modes reasonably. As a 
prelude to results presented later we mention that there arise indeed serious difficulties 
with the prediction of wave motion at  subinertial frequencies. 

6. Final remarks 
The purpose of this paper was to put forward a newly developed extended channel 

model for the description of gravitational oscillations of a homogeneous water body on 
the rotating Earth. The essential features of gravitational oscillations in rectangular 
basins with flat bottom are well predicted. In particular, Kelvin- and PoincarB-type 
wave solutions in unbounded straight channels were found, and the reflection problem 
of Kelvin-type waves at  the end of a half-open gulf was solved, as was the free oscil- 
lation in a rectangle with flat bottom using the approximate first-order linear channel 
equations. A further comparison of the frequency relations of the exact two-dimensional 
tidal operator for curved channels also indicates that, within the range of applicability 
of the channel model, effects of the curvature of the channel axis are negligible. The 
comparison of the solutions of the exact ideal operator and those of the channel model 
is sufficiently convincing to allow the conclusion that gravitational modes in a homo- 
geneous water body can be accurately predicted if rotational speeds are small (y  < 1) 
and basins are elongated with a width-to-length ratio larger than 2. Motions at 
subinertial frequencies are poorly predicted, in general, but these frequencies belong to 
rotational rather than gravitational modes. We thus conclude, and further corrobo- 
ration for this will be given in Raggio & Hutter (19823) and Hutter & Raggio (1982), 
that the channel model is a valid one as long as gravitational modes are analysed. 

In a further article (Raggio & Hutter 19823) free oscillations in natural basins using 
the channel equations of arbitrary order are presented; it will be in that paper where 
additional remarks, e.g. regarding the numerical structure of the channel equations, 
etc. will be made. 

While performing this work, G.Raggio was financially supported by the Swiss 
National Science Foundation through the National programme ‘Basic Problems of the 
Swiss Water Budget ’, Contract No. 4.006.0.076.02, which we gratefully acknowledge. 
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